hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha.
نویسندگان
چکیده
In extracts of human cells, base-base mismatches and small insertion/deletion loops are bound primarily by hMutSalpha, a heterodimer of hMSH2 and hMSH6 (also known as GTBP or p160). Recombinant hMutSalpha bound a G/T mismatch-containing oligonucleotide with an apparent dissociation constant Kd = 2.6 nM, while its affinity for a homoduplex substrate was >20-fold lower. In the presence of ATP, hMutSalpha dissociated from mismatched oligonucleotide substrates, and this reaction was attenuated by mutating the conserved lysine in the ATP-binding domains of hMSH6, hMSH2 or both to arginine. Surprisingly, this reaction required only ATP binding, not hydrolysis. The ATPase activity of hMutSalpha variants carrying the Lys-->Arg mutation in hMSH2 or in hMSH6 was severely affected, but these mutants were still proficient in mismatch binding and were able to complement, albeit to different extents, mismatch repair-deficient cell extracts. The mismatch binding-proficient, ATPase-deficient double mutant was inactive in the complementation assay and its presence in repair-proficient extracts was inhibitory. We conclude that although the ATPase activity of hMutSalpha is dispensible for mismatch binding, it is required for mismatch correction.
منابع مشابه
Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit.
The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> a...
متن کاملIdentification of mismatch repair protein complexes in HeLa nuclear extracts and their interaction with heteroduplex DNA.
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two comp...
متن کاملFunctional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis
The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with th...
متن کاملDNA mismatch repair enzyme expression in synovial tissue.
BACKGROUND Oxidative stress in RA synovial tissue can cause DNA damage and suppress the DNA mismatch repair (MMR) system in cultured synoviocytes. This mechanism includes two enzyme complexes, hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3). OBJECTIVE To examine the expression and distribution of MMR enzymes in synovial tissues from patients with arthritis and from normal subjects. MET...
متن کاملSequence context effect for hMSH2-hMSH6 mismatch-dependent activation.
Numerous DNA mismatches and lesions activate MutS homologue (MSH) ATPase activity that is essential for mismatch repair (MMR). We have found that a mismatch embedded in a nearest-neighbor sequence context containing symmetric 3'-purines (2 x 3'-purines) enhanced, whereas symmetric 3'-pyrimidines (2 x 3'-pyrimidines) reduced, hMSH2-hMSH6 ATPase activation. The 3'-purine/pyrimidine effect was mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 17 9 شماره
صفحات -
تاریخ انتشار 1998